Otarine Herpesvirus-1, not Papillomavirus, is Associated with Endemic Tumours in California Sea Lions (Zalophus californianus)

Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, One Shields Drive, University of California, Davis, CA 95616, USA, *SeaWorld San Diego, 500 Sea World Drive, San Diego, CA 92109, USA, and †The Marine Mammal Center, Marin Headlands, 1065 Fort Cronkhite, Sausalito, CA 94965, USA

Summary

The purpose of this study was to determine if Otarine Herpesvirus-1 (OtHV-1) is associated with the presence of urogenital carcinomas in California sea lions. Polymerase chain reaction (PCR) analysis with primers specific for OtHV-1 was used to compare the prevalence of OtHV-1 infection in 15 sea lions affected by urogenital carcinoma with that of age-matched and juvenile tumour-free animals, and animals with tumours of non-urogenital origin. The herpesvirus was more prevalent (100%) and more widespread in the 15 animals with urogenital carcinoma than in 25 control animals, and was most often found in the urogenital tissue (vagina and prostate) and in the draining lymph nodes. Moreover, OtHV-1 DNA was not found in any juvenile animal, or in the neoplastic tissues of animals with non-urogenital tumours. Papillomavirus-specific PCR analysis of urogenital carcinoma tissues detected papillomavirus sequences in only one carcinomatous tissue. Further studies are needed to determine if OtHV-1 contributes to oncogenesis in the California sea lion; these data show, however, that OtHV-1 is associated with urogenital carcinomas, is preferentially present in urogenital tissues, and may be sexually transmitted. Papillomaviruses, which are known to contribute to urogenital tumours in other species, did not appear to be associated with the sea lion carcinomas.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: California sea lion; gammaherpesvirus; otarine herpesvirus-1; papillomavirus; tumour; viral infection; wildlife diseases; Zalophus californianus

Introduction

Urogenital neoplasia is endemic in free-ranging California sea lions (Zalophus californianus). Over a 25-year period, neoplasia was diagnosed post mortem in 18.5% of sexually mature sea lions that died after stranding along the California coast; 85% of these neoplasms consisted of highly aggressive, histologically anaplastic, urogenital carcinoma (Gulland et al., 1996). Moreover, subclinical benign and malignant tumours, including urogenital carcinomas, were found in 6.3% of adult female sea lions killed by harmful algal blooms (Gulland, 1999). This prevalence of neoplasia was in sharp contrast to that of an earlier survey, in which only 2.5% of stranded pinnipeds and cetaceans had tumours (Howard et al., 1983). However, since that study, there have been significant reports of neoplasms in two marine organisms. First, Beluga whales (Delphinapterus leucas) in the St Lawrence Estuary often die of aggressive malignancies, believed to develop as a result of exposure to anthropogenic chemicals (Martineau et al., 2002). Second, fibropapillomas have recently emerged as a threat to health in green and loggerhead sea turtles (Chelonia mydas and Caretta caretta), these tumours being associated with infection by a novel herpesvirus (Lackovich et al., 1999).
The high prevalence of sea lion tumours and the age class of the affected animals indicate that a combination of factors accounts for tumour development. The affected animals are sexually mature (mean age 8 years, range 5–20) but cannot be considered elderly, as sea lions can live up to 35 years (King, 1983; Gulland et al., 1996). As the tumours do not occur with particular frequency in the youngest or oldest members of the population, the epidemiology is not consistent with either simple inheritance of a single defective regulator gene (as in retinoblastoma in children) or age-related accumulations of genetic mutations and deregulations (as seen in the elderly) (Cotran et al., 1999). Both inheritance and senescence may contribute to sea lion tumour development; if so, however, they probably act in concert with other extrinsic factors.

Extrinsic factors that have been associated with the development of tumours in sexually mature sea lions include viruses. Herpesviral inclusions have been seen in some neoplastic cells in urogenital carcinoma and penile papilloma (Gulland et al., 1996; Lipscomb et al., 2000). Initial sequence data of portions of the viral terminase and polymerase genes indicate a Herpesvirus in the subfamily Gammaherpesvirinae. Phylogenetically, the virus, named Otarine Herpesvirus-1 (OtHV-1), clusters in the genus Rhadinovirus, specifically with Human Herpesvirus-8 (HHV-8), the causative agent of Kaposi’s sarcoma (King et al., 2002).

The occurrence of urogenital carcinomas in sexually mature sea lions is consistent with the age prevalence of virus-associated cancers in humans patients, in whom cervical cancer, aggressive forms of Kaposi’s sarcoma and extra-nodal B-cell lymphoma develop in mature, but not geriatric, persons. Viral factors, encoded by human papillomaviruses and gammaherpesviruses (Human Herpesvirus-8 [HHV-8], and Epstein Barr Virus [EBV]), combine with underlying genetic predispositions or with the agents of concurrent infections to accelerate the development of neoplasia (Cotran et al., 1999; Faulkner et al., 2000; Goedert et al., 2002; Stoler, 2003).

OtHV-1 DNA has been consistently detected in the urogenital carcinomas of adult California sea lions, but previous studies failed to determine whether the virus is (1) specifically associated with these carcinomas, (2) part of the normal sea lion flora, or (3) simply an opportunistic agent that infects the rapidly dividing neoplastic cells (Lipscomb et al., 2000; King et al., 2002). Furthermore, the role of papillomaviruses (causative agents of urogenital malignancies in other species) in the development of the sea lion neoplasms has not been investigated. The purpose of this study was to throw light on these questions by the use of polymerase chain reaction (PCR) analysis to detect OtHV-1 in the tissues of sea lions (1) with or without urogenital carcinomas, and (2) with other types of malignancy; and to determine whether papillomaviruses are present in the urogenital carcinomas.

Materials and Methods

Sea Lions and Samples

Adults with and without (controls) urogenital carcinomas, and juveniles. These were collected at the rehabilitation facilities of The Marine Mammal Center, Sausalito, CA and SeaWorld, San Diego, CA. In total, 40 adult and 10 juvenile sea lions were examined. Fifteen (nine female, six male) of the adults had urogenital carcinomas, and 25 (17 female, eight male) adults without tumours served as controls. No neoplasia was noted in any of the juvenile animals (eight male, two female). Animals sampled were those that died or were humanely destroyed due to poor medical prognosis. Complete gross and histopathological examinations were performed on each animal to determine cancer status and cause of death. Tissues were prepared by standard techniques for histological examination.

Fifteen tissues from each animal were collected aseptically for DNA extraction and virus detection by PCR amplification. These tissues consisted of salivary gland, tonsil, retropharyngeal lymph node, skeletal muscle, lung, liver, spleen, kidney, lumbar lymph node, urinary bladder, ovary/testis, uterus/prostate, vagina/penis, cervix/precupe and trigeminal nerve ganglion. In the case of animals with urogenital carcinomas, the urogenital tract and draining lymph node contained grossly evident tumour tissue. The non-urogenital tissues taken from these animals were collected in areas free of grossly evident metastases. Samples were stored at −20 to −80 °C until processed.

Dentine layer patterns of the left upper canine were used to age adult animals (Oosthuizen et al., 1998). In cases in which this tooth was damaged during removal, results were reported as minimum ages. Tooth ageing was provided by Kelly Robertson and Kerri Danil, Southwest Fisheries Science Center, La Jolla, CA and Pat Gearin, National Marine Mammal Laboratory, Alaska Fisheries Science Center, Seattle, WA, USA. Tooth dentine layer analysis was not performed on juvenile (i.e., non-sexually mature) animals, juvenile status being determined on the basis of physical development and standard length (nose to tail tip).

Animals with non-urogenital tumours. Thirteen such animals were identified by searching the necropsy records at the Veterinary Medical Teaching Hospital, University of California, Davis. Paraffin wax blocks containing sections of tumour tissue were sectioned into 25-µm scrolls on a Leica RM2155 Rotary Microtome (Bannockburn,
DNA Extraction and PCR Analysis

DNA was extracted from fresh frozen tissues either as described by Lockridge et al. (1999), or with a commercially available phase lock gel DNA purification system (Eppendorf, Westbury, New York) according to the manufacturer's instructions. The tissue digestion steps of both procedures were modified to include alphaamylase (Sigma, St Louis, MO, USA) treatment (10% by volume for 1–2 h, 37 °C) to remove the proteoglycans present in marine mammal tissues. In the case of paraffin wax-embedded tissues, DNA was extracted from two of the 25-μm thick sections (scrolls) from each tumour. Before extraction, the paraffin wax was removed from the samples by passing them through a series of xylene and alcohol rinses (Bonin et al., 2003). The tissues were then processed for DNA extraction, with techniques developed for fresh frozen tissues. Additionally, to increase the quality of the DNA from the formalin-fixed tissues, extracted DNA was processed by a DNA restoration technique (Bonin et al., 2003), designed to fix the small nucleic acid strand breaks that accompany formalin fixation. Use of this technique improved the outcome of subsequent PCRs. DNA samples were normalized to 50 ng/μl with a GeneQuant II spectrophotometer (Amersham Biosciences, Pharmacia Biotech, Piscataway, NJ, USA).

OtvHV-1 DNA was detected in fresh frozen tissue with primers specific for a 697 bp fragment of the DNA polymerase gene (GenBank accession no. AF236050). The mean age of the urogenital carcinoma-bearing females was 9.5 years (range 7–12), and of control females 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7).

Statistical Analysis

Mean, standard deviation, χ² and P values were calculated with Sigma Plot version 8 (Aspire Software International, Leesburg, Virginia) and EpiInfo 2002 version 3.2.1 (United States Centers for Disease Control, Epidemiology Program Office, Atlanta, Georgia). P<0.005 was considered significant.

Results

Ages of Animals

The mean age of the urogenital carcinoma-bearing females was 9.5 years (range 7–12), and of control females 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7). The mean age of the urogenital carcinoma-bearing males was 9.5 years (range 7–12), and of control males 5.5 years (range 2–7).
was 8.2 years (range 4–12 years). The mean age of tumour-bearing and control males was 9.6 years (range from 8 to 11) and 13.6 years (range 11–18), respectively. The true average age of the control males was likely to have been higher than reported here, as the ages of two animals could not be calculated due to cracking of the reference tooth; these two animals were reported, however, as being a minimum of 8 and 9 years old.

Viral Infection

An OtHV-1-specific amplicon was found in at least one tissue from all (nine female, six male) animals with endemic urogenital carcinomas subjected to necropsy. Virus was found most often in areas particularly affected by neoplasia, i.e., the vagina (78%), prostate (80%) and lumbar lymph nodes (60% males, 78% females) (Tables 1 and 2). Overall, virus was found in an average of 3.56 tissues per carcinoma-bearing female (range 1–6) and 4.5 tissues per carcinoma-bearing adult male (range 1–11). OtHV-1 was detected occasionally in tissue samples from the anterior parts of the carcass, e.g., retropharyngeal lymph node, skeletal muscle, lung and trigeminal ganglion.

In contrast, there was no association between the presence of papillomavirus DNA and urogenital carcinoma. Lower genital tract tissues and draining lymph nodes from all 15 tumour-bearing animals were examined. A papillomavirus amplicon 100% homologous to human papillomavirus 21 was found only in the lumbar node of a single male.

In the tumour-free (control) adult sea lions, the OtHV-1 amplicon was detected significantly less frequently than in tumour-bearing animals (χ² = 18.77, P = 0.0015), being found in only a single tissue (uterus or salivary gland) from two of 17 control females. Thus, OtHV-1 was significantly less prevalent in control females than in urogenital carcinoma-bearing females. The virus was also more widely disseminated in the carcasses of animals with urogenital carcinoma, being detected in a mean of 5.2 tissues (range 1–11) as compared with a mean of 0.1 (range 0–1) tissues in control females.

The difference in prevalence of OtHV-1 infection between the urogenital carcinoma-bearing and control males was also significant. OtHV-1 amplicon was detected in a single tissue (prostate, prepuce or trigeminal ganglion) from three of the eight controls (37.5%) (Table 2) (χ² = 5.83; P = 0.016). Additionally, OtHV-1 DNA was more widely disseminated in the carcasses of animals with urogenital carcinoma, being detected in a mean of 5.2 tissues (range 1–11) as compared with a mean of 0.4 tissues (range 0–1) in the controls.

OtHV-1 DNA was not detected in any tissue from the juvenile sea lions, or found in any neoplastic tissue from animals with non-urogenital tumours. Table 3 summarizes the ages and diagnoses of the 13 animals with non-urogenital carcinoma. Although the two carcinomas identified bore some histological resemblance to the urogenital carcinomas, their presence in the thoracic cavity (as opposed to the urogenital system and
abdomen) distinguished them from the endemic tumours.

Discussion

This study demonstrated, for the first time, a significant association between OtHV-1 and endemic urogenital carcinoma in the California sea lion. The virus was more prevalent and widely disseminated in the carcasses of animals with urogenital carcinomas than in those without such tumours. It was also most often detected in areas particularly affected by neoplasia. Detection of OtHV-1 DNA in sites distant from the main tumour mass may have been due to micrometastases or tumour emboli in these tissues. Limitations of the standard PCR used in this study prevented precise identification of the cells infected by OtHV-1. However, tumour cells are observed histologically in blood and lymphatic vessels distant from the areas of heavy tumour infiltration, and micrometastases are often seen in distant organs (ELB and LJL, unpublished).

The association of the virus with the urogenital carcinomas may have been due to (1) a causal relationship, (2) preferential viral infection of rapidly dividing neoplastic cells, or (3) recrudescence of latent viral urogenital infection due to disease stress. Distinguishing between these three possibilities may be difficult and has confounded studies linking Epstein Barr virus (EBV) to human mammary carcinoma. In the case of EBV, viral DNA found in mammary carcinomas led some to suspect a causal relationship. However, further studies based on quantitative PCR and analysis of viral gene expression showed that only 0.1% of the cells contained EBV DNA. Hence, the initial PCR results were due to incidental infection of the neoplastic cells by EBV undergoing lytic replication (Touitou et al., 2001; Huang et al., 2003).

In the present study, incidental infection of tumour cells with OtHV-1 seemed unlikely because OtHV-1 DNA was not detected in non-urogenital tumours. Significantly, OtHV-1 was not present in two aggressive carcinomas of the thoracic cavity, or in benign mesenchymal neoplasms of the urogenital tract.

The low prevalence of OtHV-1 in the control animals suggests that stress was not the reason for viral prevalence in the urogenital carcinoma-bearing animals. In theory, OtHV-1 might latent infect the urogenital tissues of all sea lions. The low viral copy number in such an infection might prevent detection by PCR and the stress of illness and rehabilitation might favour reactivation and high copy number lytic replication. Increased viral copy numbers would increase the probability of PCR detection (Croen, 1991; Flint et al., 2001). All animals used in this study died or were subjected to euthanasia as a result of acute or chronic illnesses, and all were exposed to conditions that might be expected to lead to herpesviral recrudescence. However, in view of the stress experienced by both the tumour-bearing and control animals, stress-induced viral replication would seem an unlikely explanation for the findings.

The viruses most often associated with urogenital carcinomas in other species are papillomaviruses rather than gammaherpesviruses. Papillomaviruses have been shown to contribute to the development of cervical neoplasms in human beings and urinary bladder tumours in cattle (Cotter and Robertson, 2002). Others, such as Murine Herpesvirus 68, a newly described rhadinovirus of chimpanzees, and Bovine Herpesvirus-4, have no known association with urogenital neoplasms, and all were exposed to conditions that might be expected to lead to herpesviral recrudescence. However, in view of the stress experienced by both the tumour-bearing and control animals, stress-induced viral replication would seem an unlikely explanation for the findings.

Several gammaherpesviruses have been described in other species. Some, such as HHV-8, *Herpesvirus saimiri* and Rhesus rhadinovirus, are oncogenic under certain in-vivo conditions (Damania and Jung, 2001; Fickenscher and Fleckenstein, 2001; Cotter and Robertson, 2002). Others, such as Murine Herpesvirus 68, a newly described rhadinovirus of chimpanzees, and Bovine Herpesvirus-4, have no known association with neoplasms (Lacoste et al., 2000; Mistrikova et al., 2000; Zimmermann et al., 2001). The pathogenesis of gammaherpesvirus-induced oncogenesis is complex and the outcome of infection depends upon multiple factors. For example, EBV is highly prevalent in human populations. Normally this virus causes a self-limiting lymphoproliferative disease (Touitou et al., 2001); however, when combined with the appropriate co-factors, such as concurrent malaria infection, EBV infection may result in lymphoid tumours, or nasopharyngeal carcinoma (Touitou et al., 2001).
It is not possible to determine from the data presented whether OtHV-1 has an affinity for urogenital tissue or has a limited replication environment. The prevalence of the virus in the urogenital tissue of adults and the lack of virus in juvenile animals indicate that OtHV-1 infection may be acquired through breeding activities and be limited to replication in urogenital tissues. Sexual activity is a factor in the spread of HHV-8, in which prevalence of infection is highest in those with numerous sexual partners (Gandhi and Greenblatt, 2002).

It was of interest that OtHV-1 DNA was detected in the trigeminal ganglion of three sea lions. Two of these animals had urogenital carcinoma and one did not. In the two tumour-bearing animals, infected tumour cells may have metastasized to the area. In the non-tumour-bearing animal, OtHV-1 may have become latent in ganglion cells. Neurotropic latency, which is well recognized for alphaherpesviruses, would be unusual for a gammaherpesvirus, as latent infections with such viruses are generally located in lymphoid cells. However, insufficient information is available for OtHV-1 to rule out the possibility of latent infection in neurons.

The data presented suggest but do not prove an association between OtHV-1 and urogenital carcinomas. However, the initial hints of the oncogenic potential of EBV and HHV-8 came as a result of epidemiological studies and the detection of viral DNA sequences in tumour tissues (Klein, 1998; Raab-Traub, 2002). More detailed viral genetic studies led to the discovery of oncogenic sequences in these viruses and confirmed their mechanistic role in tumour development (Damania and Jung, 2001). Similar genetic analysis of OtHV-1 remains to be carried out. A full understanding of the pathogenic significance of OtHV-1 will require (1) confirmation that OtHV-1 is present in significant numbers of neoplastic cells, (2) genetic sequencing to confirm the presence of oncogenes, and (3) the development of a serological test to determine the prevalence of OtHV-1 in sea lion populations. These initial data, however, suggest that OtHV-1 merits further study as a model of gammaherpesvirus-induced oncogenesis.

Acknowledgments

Funding for this work was provided by the Morris Animal Foundation, the University of California Davis (UCD) Academic Senate Faculty Research Awards, the United States National Institutes of Heath (Fogarty International Center) and National Science Foundation joint program for the Ecology of Infectious Disease, and the Arthur and Elena Court Nature Conservancy. Stranded sea lions were captured and sampled under letters of authorization from the Office of Protected Resources, National Marine Fisheries Service, National Oceanographic and Atmospheric Authority, US Department of Commerce. Assistance with sea lion handling and necropsy during rehabilitation was provided by the veterinary staff, especially Dr Martin Haulena, and volunteers from The Marine Mammal Center. UCD veterinary pathology residents assisted with histological examinations and Ms Linda Jones and Mr Justin Butcher with manuscript review.

References

the National Marine Fisheries Office of Protected Resources, Washington, DC.

[Received, July 12th, 2005]
[Accepted, June 26th, 2006]