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Abstract

Emerging infectious disease has become a serious concern that has consequences for human,
animal and environmental health on a global scale. During the past two decades, it has become
clear that viruses are emerging in terrestrial environments from the human–animal interface at
an unprecedented rate. Thus, the understanding of complex diseases associated with emerging
zoonotic pathogens and the creation and execution of strategies to deal with this issue has assumed
new public health importance, requiring a One Health approach involving multiple health disciplines.
Similar infectious disease trends involving emerging viruses are now being documented in aquatic
ecosystems and are impacting marine mammals. As in terrestrial species, emerging viruses in marine
mammals may be associated with neoplasia, epizootics and zoonotic disease and involve a complex
pathogenesis involving noninfectious cofactors such as anthropogenic toxins, biotoxins, immunologic
suppression and other environmental stressors. Among the viruses recently isolated from marine
mammals are influenza viruses, morbilliviruses, papillomaviruses, herpesviruses, arboviruses,
caliciviruses and others. Many of these emerging marine mammal viruses are associated with
disease and specific pathologic findings. In other cases, the disease significance of these novel viruses
is unknown and requires further research. In this report, we briefly review emerging viruses that have
disease significance for marine mammals and/or public health. Novel concurrent clinicopathologic
data will be presented when available broadening the understanding of disease pathogenesis.
References will help provide more in-depth information. Additionally, this review has demonstrated
that marine mammals may be important sentinel animals that indicate environmental health concerns
and parallel emerging public health issues.
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Review Methodology: The following databases were searched: CAB Abstracts, Medline and Agricola (keyword search terms used).
Additionally, references from publications obtained by this method were used to check for relevant supplemental material. Colleagues were
also contacted to confirm upcoming studies not yet published.

Introduction

In the past 20 years, emerging infectious disease (EID) has
become a complex and serious concern that has con-
sequences for human, animal and environmental health on a
global scale [1–3]. By broad definition, EID may be
associated with infectious agents that are newly identified,
previously identified and spreading to a new population
and/or spreading to a new geographic region that is

undergoing ecologic transformation. Contributing factors
to the increased incidence of EID include microbial
adaptation, host immunologic dysfunction, expansion of
the human population and consequent environmental
degradation, climatic changes resulting in shifts in zoonotic
vectors and the negative synergistic effects of EID and other
infectious and non-infectious diseases. Importantly,
three-fourths of all EIDs of humans are zoonotic, most
originate in wildlife, and their incidence is increasing [2, 4].
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Thus, the understanding of complex diseases associated
with emerging zoonotic pathogens and the creation and
execution of mitigation strategies to deal with this issue has
assumed new public health importance and requires a One
Health approach of working across disciplines involving
human, domestic animal, wildlife and environmental
health [2, 5].
Similar infectious disease trends involving emerging

viruses are now being documented in aquatic ecosystems
and are impacting marine mammals. In particular,
the detection and characterization of viruses in marine
mammals have increased considerably in the past 10 years.
As in terrestrial species, emerging viruses associated with
disease in marine mammals may be associated with
neoplasia, epizootics, zoonotic disease and involve a
complex pathogenesis including noninfectious cofactors
such as anthropogenic toxins, biotoxins, immunologic
suppression and other environmental stressors [6–9].
Advanced biotechnologies combining virus isolation and
molecular diagnostics have greatly enhanced the ability to
identify potential disease aetiologies occurring in marine
mammals and the impact these diseases have on individuals,
populations and the ecosystem a whole [10]. However,
in some instances it is difficult to make a causal association
between newly reported marine mammal infectious agents
and a clinical presentation or pathology due to incon-
sistencies in marine mammal morbidity/mortality investiga-
tive effort and the logistical and economic limitations for
adequate pathologic investigations. Thus, the significant
advances in diagnostic methodology that have allowed the
improved detection of potential pathogens have to be
carefully interpreted in relation to pathologic findings which
support a causal impact on morbidity or mortality. This
paper will provide a general overview of emerging viruses
that have disease significance for marine mammal and/or
public health. Concurrent clinicopathologic data will be
presented when available that will help broaden our
understanding of viral disease pathogenesis in various
marine mammal species. In cases of emerging novel
viruses with no established or associated disease signifi-
cance, references will be provided for further study.
In-depth discussions of clinical signs, therapy, diagnosis
and epidemiology will also be available in supplied
references. Additionally, the application of some marine
mammal species as a sentinel species for environmental
health concerns and emerging public health issues will be
discussed [2, 11–13].

Papillomaviruses

The family Papillomaviridae includes 48 genera of double-
stranded circular DNA viruses that infect epithelial cells of
mucosal and cutaneous locations [7, 14]. Papillomaviruses
(PVs) are typically species-specific, site-specific and display
a predilection for squamous epithelium causing benign
sessile plaques or verrucous papillomas or, less commonly,

malignant neoplasia [15]. Novel PVs have recently been
reported by molecular, immunohistochemical and/or
classical microscopic techniques associated with sessile,
verruciform and papular cutaneous and genital papillomas
in various marine mammal species including bottlenose
dolphins (Tursiops truncatus) [16, 17], killer whale
(Orcinus orca) [18], sperm whale (Physeter macrocephalus)
[19], West Indian manatee (Trichechus manatus) [20, 21],
harbour porpoise (Phocoena phocoena) [22], Burmeister’s
porpoise (Phocoena spinipinnis) [23] and California sea lion
(Zalophus californianus) [24]. Gastric papillomas associated
with papilloma-like virions are also reported in beluga
whales [25].
The Florida manatee (T. manatus latirostris) is a subspecies

of the West Indian manatee and is found in coastal
southeastern marine, brackish and fresh water habitats of
the United States. It is a threatened species which has a high
annual mortality due to human-related factors such as boat
impacts [26]. The manatee immune system appears highly
developed to protect it against pathogens with naturally
occurring infectious disease uncommon [20, 26–28].
However, over the past decade, PV-associated papilloma-
tosis has appeared in manatees which is the first viral
disease reported in this species [29]. To date, four novel
manatee papillomaviruses (TmPVs) have been identified in
Florida manatees, two are cutaneotropic (TmPV1 and
TmPV2) and two are mucosotropic (TmPV3 and TmPV4)
and cluster in the Rhopapillomavirus genus [30]. TmPV1 is
widely dispersed among manatees and genetically similar to
close-to-root forming verruciform to papular cutaneous
papillomas [29, 31] while not much is known about TmPV2
[30]. The two mucosotropic PVs form sessile mucosal
genital papillomas (TmPV3 and TmPV4) [21, 30, 32]. Both
TmPV3 and TmPV4 are similar in size and in genomic
characterization of all PVs, with one non-coding region and
seven open reading frames (ORFs) including the E7 ORF
which is absent in cetacean PVs [32]. Alternatively, TmPV3
and TmPV4 are the first known genital mucosotropic
PVs in manatees presenting a suspected novel sexually
transmitted viral disease in this species similar to the
emerging PV-associated genital lesions in bottlenose
dolphins (see below).
More recently, and for the first time, G-quadruplex (G4)

sequences have been identified and characterized in a PV
infecting a non-human. DNA sequences with the potential
to form G-quadruplex structures (G4) were identified
across the three manatee PV genomes (TmPV1, TmPV3 and
TmPV4). G4 are associated with key biological functions
in humans including the regulation of transcription and
protein synthesis and the prevention and degradation of
genomic instability. In all TmPVs, G4 sequences were
located in the non-coding region near putative E2 binding
sites. Based on the role of G4 in PVs of humans, these
findings suggest that G4 in TmPVs are possible regulatory
elements of protein synthesis [32].
Interestingly, clinicoimmunologic data suggest that the

manatees with cutaneous tumours associated with TmPV1
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are immunologically suppressed and that the papillomas
result from activation of latent papillomavirus infections and
re-inoculation from active infections [20]. Additionally,
recent seroepidemiologic data [33] indicated that Florida
manatees living in the wild are naturally infected by TmPV1
but rarely show TmPV1-induced papillomatosis. The
prevalence of TmPV1 antibody among manatees with the
absence of lesions suggests an immunologic response that
effectively controls productive PV infection and/or rapidly
resolves lesions. Similar studies have not been conducted
to evaluate the prevalence of TmPV3 and TmPV4 in
wild manatees. The emergence of papillomavirus-induced
papillomas in Florida manatees, the possibility of activation
of latent infection or transmission of active infection to
free-ranging manatees and the underlying cause(s) of
immune suppression predisposing manatees to viral
papillomatosis require future research for understanding
the pathogenesis of this emerging viral infection.
Notably, in the past 12 years, nine novel bottlenose

dolphins PVs (TtPV1–9) have been separately associated
with genital papillomatosis and characterized by phylo-
genetic analysis within the genera Omikronpapillomavirus
(OmikronPV), Upsilonpapillomavirus (UpsilonPV) and
Dyopipapillomavirus [7, 16, 17, 34, 35]. Two delphinid
gammaherpesviruses (DeHV-4 and −5) have also been
found with PV co-infections [36, 37]. Orogenital sessile
papillomas (OP) associated with novel PV and herpesvirus
(HV) infections were first noted in wild bottlenose dolphins
from southeast Atlantic coastal waters in 2005 as part of a
capture/release health assessment study from 2003 to 2015
[6, 38–40]. Lingual and genital mucosal lesions were all
grossly and microscopically similar sessile papillomas [40].
A novel PV was isolated from a genital papilloma which was
designated as TtPV-2 [16]. This virus represented the first
identified North American cetacean PV associated with a
genital sessile papilloma. Electron microscopy revealed the
presence of HV-like intranuclear particles and enveloped
cytoplasmic virions in all lingual and genital papillomas
examined [38]. Polymerase chain reaction (PCR) analyses
also detected the presence of DeHV-4 in the genital
papillomas while serological screening using an antibody-
based TtPV enzyme-linked immunosorbent assay (ELISA)
demonstrated previous and/or current infection of the
DeHV-4 positive dolphins with at least one TtPV type
[37, 41]. The TtPV ELISAwas also used to assess the extent
of dolphin PV infection [42]. Ninety percent of wild adult
dolphins sampled were antibody positive with a male bias
and evidence for seroconversion with age. Interestingly,
76% of seropositive dolphins did not have genital tumours
[41]. Dolphins with OP also had clinicopathologic abnorm-
alities including hypoferraemia, hyperglobulinaemia and
hyperalphaglobulinaemia associated with an acute phase
inflammatory response and upregulated innate and humoral
immunity likely responses to the tumours and/or the
viruses associated with the tumours [43]. No human
health risks are known to exist from marine mammal
PVs or HVs.

The prevalence of OP increased dramatically during
the first 3 years of the aforementioned dolphin health
assessment study, supporting laboratory data that an
infectious agent(s) was driving disease emergence [6].
The data indicated that PV/HV infection in the wild dolphins
examined is common and readily transmitted horizontally,
most likely through sexual contact [41, 43]. The absence of
tumours in PV antibody positive dolphins suggests previous
PV infection with immunologic suppression of tumour
formation. This speculation is further supported by the
noted eventual disappearance of some OP on subsequent
follow-up health assessment examinations. However,
the viral component in tumour pathogenesis appears
to be complex since PV DNA is not always detected
after infection and neoplastic transformation [37]. These
observations suggest that genital papillomatosis is an
endemic self-limiting disease in free-living dolphin.
However, the biologic behaviour of OP is less clear as it
appears that lesions in captive dolphins can undergo
malignant transformation and progress to life-threatening
aggressive metastatic squamous cell carcinoma [38, 43, 44].
Further research is needed to determine whether this
occurs in free-living dolphins.
This research showed the first evidence of tumour-

associated combined PV and HV-infection in a marine
mammal species and evaluated the controversial effects of
viral co-infection in tumour pathogenesis. The latter is an
important comparative issue of human health significance as
some human PVs are the causative agents of cervical
carcinoma and are regularly found with herpes simplex
virus type-2 co-infections [37].
The role of PVs as pathogens in wild pinnipeds is

currently unknown. A novel PV species (ZcPV1) was
isolated from cutaneous prepucial and axillary benign
proliferative lesions from two captive adult California sea
lions [24]. Both lesions regressed spontaneously after 2–5
months. Additionally, multiple cutaneous proliferative
sessile plaques have been recently reported in another
captive California sea lion that were associated with ZcPV1
which progressed to in situ and invasive squamous cell
carcinoma [45]. ZcPV1 is in a clade with canine papilloma-
virus (CPV3, CPV4) in the genus Chipapillomavirus [46].

Paramyxoviridae: Morbilliviruses

For in-depth references and recent reviews of marine
mammal morbilliviruses see Duignan et al. [46–48],
Van Bressem et al. [49] and Bossart et al. [2, 6, 50].
The family Paramyxoviridae includes the important

marine mammal viral pathogens in the Morbillivirus genus
which includes canine distemper virus (CDV), phocine
distemper virus (PDV) and cetacean morbillivirus (CeMV).
Other viruses in this genus include measles virus (MV) in
humans and primates, peste-des-petits ruminant virus
in small ruminants and rinderpest virus in large ungulates.
The marine mammal morbilliviruses emerged as recognized
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viral pathogens in the late 1980s. PDV and CDV are
transmitted at the aquatic–terrestrial interface while CeMV
is transmitted between cetacean species in the aquatic
environment. Periodically, marine mammal morbilliviruses
cause widespread mass mortalities due to uninterrupted
virus transmission that is further influenced by unique social
behaviours, environmental factors and virus–host vari-
ations such as immunologically naïve populations or those
populations with low levels of herd immunity [51]. CDV is
documented causing epizootics in Baikal seals (Pusa sibirica)
and Caspian seals (Pusa caspica). Harbour seals (Phoca
vitulina vitulina) are the most susceptible phocids to PDV
based on historic epizootics and immune function studies
[52, 53]. The reason for this susceptibility is unknown.
Data suggest that the harbour seal immune system
recognized fewer PDV antigens than that of grey seals
[52]. Odobenidae (walruses) and Otariidae (sea lions and
fur seals) historically do not appear to be highly susceptible
to PDV. CeMV appears to be endemic in pilot whales
(Globicephala sp.) of the North Atlantic with a high level
of herd immunity in these species with only sporadic
mortality [49, 54]. However, CeMV has caused mass
epizootics in other odontocetes including harbour
porpoises (P. phocoena) and striped dolphins (Stenella
coeruleoalba) in Europe in the late 1980s and early 1990s.
Between 1987 and 1988 an epizootic of CeMV infection
with widespread mortality occurred in bottlenose dolphins
along the eastern coast of the United States [55].
Approximately 2500 dolphins died, representing a
ten-fold increase in mortality and loss of an estimated
50% of the inshore population of bottlenose dolphins [56].
Deaths were reported from New Jersey to central Florida
[57]. While this epizootic was unprecedented in scale, it
was preceded and followed by more localized die-offs of
bottlenose dolphins on the US Atlantic coast and in Gulf
of Mexico [47, 55, 58]. Recently, another large epizootic of
CeMV infection began along the eastern US seaboard
which moved southwards in a similar pattern to the 1987
epizootic killing approximately 1650 dolphins from 2013 to
2015 [59, 60]. Additionally, CeMV has recently emerged in
the Southern Hemisphere as a cause of epizootics among
several delphinid species in Australia and Brazil [61–65].
Globally, CeMV infection has now been detected in many
species of odontocetes (toothed whales and dolphins) and
some mysticetes (baleen whales). For example, CeMV has
recently been reported in stranded fin whales (Balaenoptera
physalus) from the Mediterranean and North Sea [66, 67].
The taxonomy of CeMV currently is characterized by four
strains and two lineages which are reviewed in Duignan
et al. [46].
Antibodies to CeMV have been found in Florida

manatees and polar bears (Ursus maritimus) without
clinicopathologic evidence of disease [28, 68]. Similarly,
there is preliminary evidence of CDV infection in northern
(Enhydra lutris kenyoni) and southern sea otters (Enhydra
lutris nereis) from the Pacific Northwest and California [46].
Alaskan sea otters may have been infected from a phocine

distemper like virus rather than CDV [69] while no evi-
dence of infection or disease has been reported in marine
otters (Lontra felina) from Chile and Peru.
Marine mammal morbilliviruses as with terrestrial

morbilliviruses have an affinity for lymphoid, epithelial and
neuronal tissue and the pathologic findings of CeMV and
PDV are similar to CDV infections of terrestrial carnivores
[70, 71]. Lymphotropic morbillivirus replication results
in immunosuppression and often secondary opportunistic
bacterial, fungal and protozoal infections which may
result in highly variable lesions in more chronic morbilli-
virus infections [6, 72, 73]. Pathologic findings of infection
include interstitial to bronchointerstitial pneumonia,
profound widespread lymphoid depletion and syncytial
cell formation [46, 74]. Phocids may also develop severe
interstitial emphysaema. Additionally, cetaceans with
chronic morbillivirus infection may develop nonsuppurative
encephalitis [75]. Intracytoplasmic and intranuclear
oeosinophilic viral inclusions may be detected within
bronchial and bronchiolar epithelial, pulmonary syncytial,
neuronal and other cell types. These inclusions, along with
lymphoid and other tissue, are often found to be
immunohistologically positive for morbillivirus antigen.
No human health risks are known to exist from CeMV,
PDV and CDV.
Important unanswered questions remain regarding the

epidemiology of CeMV infection including the maintenance
of CeMV infection in cetacean populations during inter-
epidemic periods and the factors that lead to clinical disease
and the development of epizootics. Recently, one author
(GDB) and colleagues reported novel seroepidemiologic
and pathologic evidence of subclinical CeMV infection in
a population of the wild Florida bottlenose dolphins as
part of the long-term capture/release health assessment
study described above [50]. Importantly, novel evidence for
recurring CeMV infection was found in dolphins in the first
post-CeMV epizootic (1987–1988) period in the absence of
pathologic evidence widespread CeMV mortality [47].
To further investigate CeMV infection in the study

dolphin population, a suite of clinicoimmunopathologic
variables was evaluated in dolphin seropositive for CeMV
and seronegative healthy dolphins [71]. In CeMV sero-
positive dolphins, innate immunity was upregulated with
significant increases in lysozyme concentration and
marginally significant increases in monocytic phagocytosis.
Adaptive immunity was also affected. Mitogen-induced
T lymphocyte proliferation responses were significantly
reduced in dolphins with positive CeMV antibody titres and
marginally significant decreases were found for absolute
numbers of CD4 lymphocytes. The findings suggested
impairment of cell-mediated adaptive immunity, similar to
the immunologic pattern reported with acute morbillivirus
infection in other species (e.g. human measles, canine
distemper) [71]. These data indicated that exposure to
CeMV may result in subclinical infection producing
immunologic changes that could influence overall health.
The cell-mediated immunosuppressive effects associated
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with subclinical CeMV infection could make this dolphin
population highly susceptible to opportunistic infectious
and noninfectious diseases. Thus, the long-term impact
of emerging viral diseases on population health may be
difficult to appreciate when dealing with a short-term
mortality-associated epizootic from an emerging virus.
For example, morbilliviruses and some PVs are thought
to interfere with population health by various mechanisms
including impacts on population abundance by increased
mortality rates, lowered reproductive success, compro-
mised immunity or by synergistically increasing the
virulence of other diseases [2, 43, 50, 76, 77].

Paramyxoviridae: Respirovirus
(Parainfluenza Viruses)

A parainfluenza virus (TtPIV-1) was isolated from a captive
bottlenose dolphin which was determined to be related
to bovine PIV-3 genotype B [78, 79]. A serologic survey
demonstrated antibodies to parainfluenza in wild and
captive bottlenose dolphins [80]. Seroconversion to
TtPIV-1 also occurred in other exposed dolphins.
Postmortem pathologic findings in this dolphin included
focally extensive pyogranulomatous bronchointerstitial
pneumonia and ulcerative laryngotracheitis but the role of
TtPIV-1 in these is unknown. TtPIV-1 is a potential zoonosis
as its relative, PIV-3, can infect terrestrial mammals
including humans [46].

Influenza Viruses

For comprehensive reviews and zoonotic discussion of
influenza viruses see Fereidouni et al. [81], Duignan et al.
[46] and Bailey et al. [5]. Influenza viruses are members
of the orthomyxovirus family and classified into four types:
A, B, C and D. Only influenza A and B viruses are found
in marine mammals. Antigenic shifts within influenza A
viruses contribute to the emergence of new viral strains.
Harbour seals are especially impacted by influenza A and B
viruses [46, 82]. Epizootics causing mass mortalities
among harbour seals have been associated with numerous
influenza A strains in the eastern and western North
Atlantic and North Sea including a large die-off in 2014 [83].
Seroepidemiologic studies indicate that influenza A viruses
including pandemic influenza H1N1 commonly infect
other healthy wild pinnipeds globally including California
sea lions, northern sea otters, northern elephant
seals (Mirounga angustirostris), harp seals (Pagophilus
groenlandicus) and hooded seals (Cystophora cristata), and
cetaceans including common minke whales (Balaenoptera
acutorostrata), Dall’s porpoises (Phocoenoides dalli) and
beluga whales (Delphinapterus leucas) [84–88]. Two
influenza A strains were isolated postmortem from a long
fin pilot whale (Globicephala melas) [89] and one influenza A
strain was isolated from an unidentified rorqual [90].

Phylogenetic research indicates that many of the marine
mammal influenza A strains originated from aquatic avian
strains [5].
While various hosts for influenza A viruses are well

documented, influenza B viruses have been demonstrated
in only humans and seals [91]. Influenza B virus has been
routinely detected in healthy harbour and grey seals
(Halichoerus grypus) from the North Sea for almost
20 years [91, 92]. Serological evidence for influenza B
infection has also been detected in Caspian seals (P. caspica)
and South American fur seals (Arctocephalus australis)
[93, 94].
Gross and microscopic lesions of influenza A in harbour

seals include acute haemorrhagic interstitial pneumonia
with necrotizing bronchitis-bronchiolitis, regional haemor-
rhagic lymphadenopathy, subcutaneous emphysaema, acute
conjunctivitis and suppurative to serosanguinous rhinitis
[46, 82, 95]. It is unclear whether influenza B causes clinical
disease in seals [92].
From a public health perspective, influenza A viruses

have pandemic potential with associated high human
mortality. Influenza B viruses cause disease in the elderly
and other high risk human populations. Thus, appropriate
personal protective equipment and disinfection precautions
should be encouraged when working with stranded and
wild marine mammals that are susceptible to influenza
infection and associated disease.

Polyomaviruses

Polyomaviruses have been isolated from a northern fur seal
(Callorhinus ursinus), California sea lions, a Hawaiian monk
seal (Neomonachus schauinslandi), a common dolphin
(Delphinus delphis), a southern sea otter and a Weddell
sea (Leptonychotes weddellii) [96–101]. A novel polyoma-
virus (sea lion polyoma virus 1) was identified from a
proliferative tongue lesion of a California sea lion which the
first known polyomavirus of a host in the order Carnivora
[102]. California sea lion polyoma virus 1 infection was
present in 24% of wild stranded sea lions as demonstrated
by q-PCR. The association of these polyomavirus infections
with pathology or disease is largely unclear at this time. The
public health significance is unknown.

Arboviruses: Togaviridae and Flaviviridae

Several notable human and animal pathogens belong to the
arthropod-borne virus (arbovirus) families Togaviridae and
Flaviviridae. The Togaviridae zoonotic alphaviruses include
Venezuelan, western and eastern equine encephalitis (EEE)
viruses [103]. The Flaviviridae includes the dengue fever
virus, yellow fever virus, West Nile virus, Zika virus and
others and have notable recent public health implications
[8]. West Nile virus infection associated with nonsuppura-
tive encephalitis was reported in a captive killer whale
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[104]. Additionally, health assessment seroepidemiologic
studies of wild bottlenose dolphins in Florida demonstrated
antibodies to several arboviruses including West Nile
virus and Venezuelan, western and EEE viruses [103].
The combined data represent the first reports of these
arbovirus pathogens in wild cetacean populations. The
arboviruses examined in this study are commonly found in
Florida, and the public health risks posed by these
arboviruses are well documented [103, 105]. Evidence of
exposure to these pathogens in the dolphin population may
indicate mosquito transmission to dolphins from infected
bird reservoirs in the same geographical regions as human
case activity [103].
The flavivirus genus Pegivirus contains viruses that infect

humans, nonhuman primates, bats, horses, rodents and
pigs. Recently, the discovery of a near complete genome of
a new species of pegivirus has been detected in wild
bottlenose dolphins from the same health assessment study
described above [8]. This novel dolphin pegivirus (DPgV) is
thought to be the first member of the family Flaviviridae
sequenced from a cetacean species and appears most
closely related to porcine pegivirus and Theiler’s
disease-associated virus. Porcine pegivirus is associated
with lameness and cutaneous vesicles in pigs while Theiler’s
disease is a common cause of acute hepatitis and liver
failure in horses [106]. Interestingly, both cutaneous
vesicles and acute hepatitis have been reported in the
wild bottlenose dolphin population where DPgV was
isolated, thus a causal relationship between DPgV and the
previously reported pathologic findings cannot be ruled out
[107, 108]. Further research is needed to evaluate the
DPgV host range, zoonotic risk, route of transmission,
prevalence and potential role in disease within wild and
captive dolphin populations [8].

Herpesviruses

The number of marine mammal alpha and gamma HVs
detected in the past 10 years has grown substantially and
unique features of HV-associated disease such as viral
latency are being further defined and elucidated [109, 110].
To this end, in-depth references and comprehensive
reviews of marine mammal HVs can be found in Duignan
et al. [46], Maness et al. [111] and van Beurden et al. [112].
A summary overview of characterized marine mammal HVs
for which there appears to be an association with a clinical
presentation or pathology is provided in Table 1. Most of
the HVs identified in marine mammal tissues have been
associated with relatively minor mucosal or epidermal
lesions but are occasionally associated with fatal systemic or
central nervous system infections in both pinnipeds and
odontocetes [113–116].
Perhaps the most significant HV disease association is

that between otarine HV-1 (OtHV-1) and urogenital
carcinoma (UGC) in California sea lions [130, 132]. UGC
accounts for up to 18% of subadult and adult sea lion

mortalities for northern California with up to 26% of
all animals in these age classes affected when non-fatal
and microscopic lesions are factored in [133, 134]. OtHV-1
is a gammaherpesvirus presently in an unclassified genus
which is phylogenetically related to human HV 8 (HHV-8),
an oncogenic HV associated with Kaposi’s sarcoma [135].
Buckles et al. [131] showed that the virus was always
present in tissue from sea lions with UGC and more
common in tissues from the urogenital tract. An age-
stratified study of prevalence among apparently healthy
free-living sea lions found that 46% of adult males (n= 52),
22% of adult females (n= 72) but only 6% of juvenile
sea lions (n= 120) were OtHV-1 positive by PCR.
Furthermore, the virus was more commonly detected in
swabs from the lower genital tract compared to swabs from
the pharynx and peripheral blood leukocytes [132]. These
results strongly suggested a sexual mode of transmission
with similarities to the epidemiology of HHV-8 and Kaposi’s
sarcoma in people [136]. Studies are currently underway to
determine whether known herpesviral oncogenes present
in HHV-8 also occur in OtHV-1 (Alissa Deming, personal
communication, 2018).

Poxviruses

For more thorough reviews see Tryland et al. [137],
Bossart et al. [40] and Van Bressem and Raga [138].
Cetacean and pinniped poxviruses are globally wide-
spread and commonly found in regions where these
marine mammal species are found. Cetacean poxvirus
infections have been described in mysticetes and odonto-
cetes including southern right whales (Eubalaena australis),
humpback whale (Megaptera novaeangliae), bowhead
whales (Balaena mysticetus), harbour and Burmeister’s
porpoises and bottlenose, striped, common, dusky
(Lagenorhynchus obscurus) and Hector’s dolphins
(Cephalorhynchus hectori) [46, 76, 139–143].
Pinniped parapoxviruses are characterized in California

sea lions, northern fur seals, harbour seals from the
north Pacific ocean; ringed (Pusa hispida) and spotted
seals (Phoca largha) from the Arctic; grey and harbour seals
from the Atlantic; southern sea lions (Otaria byronia)
from South America, Weddell seals from Antarctica;
Mediterranean monk seals (Monachus monachus) and
Baikal seals [137, 144–151]. A new species of poxvirus
related to an orthopoxvirus was associated with raised,
ulcerated cutaneous lesions in Steller sea lion (Eumetopias
jubatus) pups [147, 152]. A novel poxvirus was also
described in two orphaned northern and southern sea
otters in California [153].
Poxviruses have been considered emerging pathogens in

cetaceans and are presently classified into two major
lineages: CePV-1 in odontocetes and CePV-2 in mysticetes
[154]. Cetacean pox virus causes ‘tattoo skin disease’
(TSD) which is a poxvirus dermatopathy proposed to be
caused by a new genus of Cetaceanpoxvirus most closely
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related to members of the Orthopoxvirus genus with
different cetacean lineages [142, 147]. Grossly, TSD
cutaneous lesions are typically randomly distributed, multi-
focal to coalescing, ring to pinhole shaped, flat, soft, black
with a light grey margin and nonulcerative, ranging from
0.3 to 1 cm in diameter. Lesions occasionally have a black
punctiform stippled pattern giving rise to the common
name. Microscopically, the stratum externum of the lesions
is moderately hyperplastic and ventrally compresses the
underlying stratum intermedium. Keratinocytes of the
stratum intermedium often have marked cytoplasmic
vacuolation and contain variable numbers of spherical or
irregularly shaped, pale, oeosinophilic, intracytoplasmic

inclusions [40]. Ultrastructurally, the intracytoplasmic
inclusions are composed of dumbbell-shaped virions
[139]. Inflammation is not typically observed except in
chronic cases that become secondarily infected with
opportunistic organisms.
Cutaneous pox virus lesions of otarids and phocids are

proliferative and characterized by hyperkeratosis and
parakeratosis of the stratum spinosum and stratum
corneum with often marked cytoplasmic vacuolation.
Keratinocytes of the stratum spinosum may contain low
variable numbers of spherical or irregularly shaped, pale,
oeosinophilic, intracytoplasmic viral inclusions [148].
A mixed inflammatory cell infiltrate also may be present.

Table 1 Herpesviruses of clinical significance in cetaceans and pinnipeds

Subfamily/genus Host Clinical significance References

Alphaherpesvirus/Varicellovirus
Phocid herpesvirus-1 (PhHV-1) Harbour and grey seals Pneumonia, adrenal

and hepatic necrosis
111, 113, 115, 117

Delphinid herpesvirus-1 and 2
(DeHV-1 and −2)

Bottlenose dolphin Multiple organ necrosis 111, 118

Delphinid herpesvirus-7 (DeHV-7) Bottlenose dolphin
(stranded)

Skin lesions 111, 119

Beluga whale herpesvirus-1 (BWHV-1) Beluga whale Genital ulcers 120
Alphaherpesviruses/Unclassified
Delphinid herpesvirus (DeHV-3 and −8) Bottlenose dolphin Dermatitis 111, 121
Stenella coeruleoalba herpesvirus
(Sc/2011/ENoAt Brain and
Sc/2007/ENotAt Brain)

Striped dolphin Encephalitis 122

Stenella coeruleoalba herpesvirus
(Sc/2011/ENoAt Skin)

Striped dolphin Dermatitis 199

Ziphius cavirostris herpes-virus
(GU066291)

Cuvier’s beaked whale Lymphoid necrosis 123

Mesoplodon densirostris herpesvirus Blainville’s beaked whale Nephritis 123
Harbour porpoise herpesvirus-2 (PPHV-2) Harbour porpoise Encephalitis 116

Gammaherpesvirus/Percavirus
Phocid herpesvirus-2 (PhHV-2) Harbour, hooded,

ringed, harp seals,
California sea lion

Possible neurological
signs in hooded seals
(no lesions reported)

111, 124, 125

Gammaherpesvirus/Macavirus
PhHV-6 Harbour seals, northern

elephant seals
Ocular swabs.
Not associated
with pathology

126

Gammaherpesvirus/Pinniped clade
Otarine herpesvirus-3 (OtHV-3) California sea lion Esophageal ulcers and

B cell lymphoma
127

OtHV-4 California sea lion Ocular swabs.
Not associated
with lesions

126

PhHV-4 Northern elephant seal Oral ulcers 111, 128
PhHV-7 Harbour and grey seals Gingivitis or glossitis 83

Gammaherpesvirus/Toothwhavirus
Phocoena phocoena or
Phocoenid herpesvirus-1 (PPHV-1)

Harbour porpoise Genital lesions 112, 116

Kogia sima herpesvirus- 1 (KoHV-1) Dwarf killer whale Genital lesions 111, 112, 119
Delphinid herpesvirus (DeHV-6) Risso’s dolphin Genital lesions 119
DeHV-4 and −5 Bottlenose dolphin Genital lesions 111, 119
Ziphid herpesvirus-1 (ZiHV-1) Blainville’s beaked whale Genital lesions 111, 129

Gammaherpesvirus/Unclassified
OtHV-1 California sea lion,

South American fur seal
Neoplasia (urogenital
carcinoma in California
sea lions)

111, 130, 131

G.D. Bossart and P.J. Duignan 7

http://www.cabi.org/cabreviews



In northern fur seals and South American sea lions, the
nodular pox lesions are characterized by polygonal
epithelial cells that proliferate into the dermis. These cells
have abundant oeosinophilic granular cytoplasm often with
a single large round cytoplasmic inclusion body, a round
vesicular nucleus and prominent nucleolus. Sea otter
cutaneous pox lesions have epidermal hyperplasia with
ulceration, and rete peg formation projecting into the
dermis [153]. Intracytoplasmic inclusions consistent with
Bollinger bodies may be present which ultrastructurally are
consistent with pox inclusions.
Clinical and epidemiological data indicate that poxvirus

infection in wild and managed odontocetes does not cause
a high mortality rate when endemic [76, 77, 155, 156].
Stress, climate events, degraded environmental conditions
and compromised general health appear to play a major
role in the clinical manifestation of TSD [76, 77, 139, 141,
157, 158]. TSD in stranded Florida dolphins was speculated
to be related to prolonged physiologic or pathologic
stressors [107]. Additionally, TSD may be a general
indicator of cetacean population health and the high
prevalence of lesions in some adult odontocete populations
may reflect immune suppression [40, 77, 108, 157]. Indeed,
health assessment studies on free-living dolphins have
documented immunologic perturbations with various
infectious diseases which may further predispose suscep-
tible individuals to TSD [6, 40]. Furthermore, dolphins from
Florida health assessment studies are highly exposed
to mercury, which also may be immunosuppressive
[159–161]. This finding led to a recent study of mercury
levels in coastal human residents, a seminal investigation
which directly applied the findings from a sentinel species to
identify a public health hazard in a contiguous human
population [159]. Thus, environmental and anthropogenic
factors were suggested to play a role in the pathogenesis,
diversity and prevalence of TSD as well as other mucocu-
taneous lesions [6, 40, 160]. These studies illustrate and
reaffirm the important role of dolphins as sentinels for
marine ecosystem and public health.
Pinniped pox lesions demonstrate similar clinical and

epidemiologic features to those seen in cetaceans.
However, while cetacean pox viruses are species specific
for odontocetes and mysticetes, pinniped parapoxviruses
are zoonotic and can cause nodular painful proliferative
cutaneous lesions in humans that are associated with fever
and myalgia [162]. Thus, appropriate personal protective
equipment and other precautions should be encouraged
when working with stranded and wild pinnipeds.

Adenoviruses

Marine mammal adenoviruses belong to the genus
Mastadenovirus and infect cetaceans, pinnipeds and otters
[35, 98, 163–165]. Sea lion adenoviruses (OtAdV-1,
OtAdV-2) were isolated from California sea lions while
similar adenoviruses were found in liver samples or faeces

from pinnipeds including South African and South
American fur seals, a South American sea lion and a
Hawaiian monk seal [98, 166]. Adenoviruses have also been
isolated from northern elephant seals (PhAdV-1), Pacific
harbour seal (PhAdV-2), bottlenose dolphins (Tursiops
adenovirus-1), sei whales (Balaenoptera borealis), bowhead
whales, beluga whales, harbour porpoises and polar bears
(U. maritimus) [98, 126, 164–173]. In otters, canine
adenovirus-1 and a novel adenovirus have infected captive
Eurasian otters (Lutra lutra) and southern sea otters,
respectively [100, 174].
Lesions associated with adenovirus infection in pinnipeds

include an acute necrotizing hepatitis, ulcerative keratitis,
corneal oedema, iridocyclitis, arteritis and conjunctivitis
with endothelial cell infection [46]. Oeosinophilic intra-
nuclear inclusions can be found in multiple tissues and
endothelial cells. Ultrastructurally, adenoviruses-like virions
are observed within the nucleus of affected hepatocytes and
endothelial cells. No public health risk is known to exist at
this time for people exposed to infected animals.

Coronaviruses

Coronaviruses (CoV) have been detected in captive and
wild (alpha seal CoV) Pacific harbour seals, a captive beluga
whale (gamma BWCoV) and captive Indo-Pacific bottle-
nose dolphins (Tursiops aduncus) (gamma BdCoV)
[175–178]. Seal CoV is closely related to feline, canine,
swine and ferret CoVs while the BWCoV and BdCoV are
similar and have been proposed to represent a species
specific cetacean CoV [176, 178].
Lesions identified in suspected coronavirus infection

include an acute necrotizing enteritis and pulmonary
oedema which was associated with acute death of three
captive harbour seals [175]. Pulmonary congestion,
haemorrhage and consolidation in five wild harbour seals
with necrotizing lobar pneumonia and intralesional bacteria
was reported in two of these seals from the same localized
mortality event in central California [176]. Seal CoV was
detected in lung tissue from this mortality event but a causal
association could not be confirmed. The beluga whale
referred to above had a severe centrilobular to coalescing
hepatic necrosis. The bottlenose dolphins (n= 3) had
BdCoV detected in routine faecal samples and had no
concurrent associated morbidity or mortality associated
with CoV infection. Interestingly, BdCoV seroconversion
was detected in these dolphins following BdCoV infection
recovery [178]. No public health risk is known to exist in
people exposed to CoV-infected marine mammals at
this time.

Caliciviruses

Marine mammal viruses detected from the Caliciviridae
family include the viruses in the Vesivirus, Norovirus and
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Sapovirus genera [46]. The majority of the marine mammal
vesiviruses are strains of vesicular exanthaema of swine
virus (VESV) and include San Miguel sea lion viruses SMSV-1
to SMSV-7, SMSV-9 to −11, SMSV-13 to- 17; Steller sea lion
vesivirus SLVV-V810 and V1415; walrus calicivirus and
cetacean calicivirus CCV-Tur-1. The pinniped vesiviruses
SMSV-8 and SMSV-12 are genetically different from VESV
and likely represent other vesivirus species [179]. Over
20 marine mammal vesivirus serotypes have been detected
in Pacific marine mammals including California sea lions,
northern fur seals, Hawaiian monk seals, Steller sea lions,
Pacific walrus (Odobenus rosmarus divergens), bottlenose
dolphins, grey whales (Eschrichtius robustus), fin whales, sei
whales (B. borealis) and sperm whales (P. macrocephalus)
[46, 180, 181]. Some serotypes can infect terrestrial
mammals [46, 182].
Two sapoviruses (Csl SaV1 and Csl SaV2) were detected

in faeces of California sea lions and closely related to
SaV genogroup V and to the human SaV genogroup II,
respectively. Noroviruses have been detected in the
California sea lion and harbour porpoise which

are closely related to genogroup II norovirus and to a
norovirus sequence detected in oysters, respectively
[183, 184].
The consistent pathologic findings for marine mammal

vesivirus infections are epidermal vesicles typically
ranging from 1 to 3 cm which may coalescence and form
bullae [46]. Vesicular and nonvesicular lesions also may
involve mucocutaneous junctional tissue including the
nasal mucosa. Viral replication in the stratum spinosum
leads to vacuolar degeneration and necrosis which form
focal intraepidermal vesicles. The vesicles eventually
rupture often leaving shallow ulcers that typically heal
uneventfully. VESV produces a disease in swine that is
clinically indistinguishable from the viruses that cause
foot-and-mouth disease and swine vesicular disease which
gives VESV more historical significance than medical
significance at this time. While not considered zoonotic
viruses, care should be taken when working around marine
mammal vesiviruses due to the wide range of species
these viruses can infect. Additionally, the marine mammal
sapoviruses and noroviruses have not been associated with

Table 2 Other viruses of marine mammals

Virus Characteristic Host
Putative clinical
association References

Anellovirus
(unclassified)

Non-enveloped,
single-stranded (ss)
DNA viruses

California sea lion, Pacific
harbour seal, Southern sea
otter, South American fur seal,
Subantarctic fur seal

Associated with
pneumonia in a California
sea lion

100, 185,
186

Astrovirus
(unclassified)

Non-enveloped,
positive sense ss RNA
viruses

Bottlenose dolphin, Steller sea
lion, California sea lion, Minke
whale

Unknown significance 183, 187

Picobirnaviruses Non-enveloped double
stranded (ds)-RNA
virus

California sea lion, S. American
fur seal

Unknown significance
(enteritis in humans)

183, 186

Picornaviruses Non-enveloped,
positive-sense
ss-RNA virus

Harbour and ringed seals,
California sea lion, South
American fur seal, Subantarctic
fur seal

Phopivirus in livers of
harbour seals that died
from avian influenza
H3N8. No hepatic
pathology noted

183, 186,
188, 189

Rhabdovirus Enveloped,
negative-sense
ss-RNA virus

Ringed seal, white-beaked
dolphin, harbour porpoise

Rabies in ringed seal 190–192

Reovirus Non-enveloped,
ds-RNA viruses

Steller sea lion, South American
fur seal, Subantarctic fur seal

Isolated from fetus and
necrotic placenta of
Steller sea lion

186, 193

Retrovirus Enveloped RNA viruses California sea lion, Killer whale,
Southern sea otter

Alopecia in California
sea lion

100, 124,
194

Asfarviruses Enveloped, ds-DNA,
arthropod-vectored

California sea lion Unknown significance 183

Circovirus Non enveloped circular
ss-DNA

New Zealand, South American
and Subantarctic fur seals,
Southern sea otter, Longman’s
beaked whale (Indopacetus
pacificus)

Unknown significance 100, 171,
195, 196

Hepadnavirus Enveloped, ds-DNA Pacific white sided dolphin Chronic active hepatitis,
dermatitis

175

Parvoviruses Non-enveloped,
ss-DNA viruses

California sea lion, Southern sea
otter, South American fur seal,
Subantarctic fur seal

Unknown significance 100, 183,
186, 197,
198
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clinical signs or pathologic findings. However, porpoise
norovirus has been shown to replicate in enterocytes
[184]. This finding together with the genetic similarity
between the porpoise norovirus and the oyster norovirus
raises concern about significance of porpoise norovirus as a
zoonotic pathogen.

Other Viruses

The list of other viruses that have been isolated or
otherwise characterized from marine mammals continues
to increase and are listed in Table 2. The clinicopathologic
significance of many of these viruses remains to be
determined.

Conclusions

As emerging viruses and associated diseases in marine
mammals are being increasingly detected and characterized
and the effects of ecologic and climate changes are
becoming better appreciated, the health of the Earth’s
oceans has become a focus of intense public interest.
One way of evaluating aquatic ecosystem health is devel-
oping and utilizing a sentinel species animal model. Such
animal sentinels can provide critical advance notice of
deleterious environmental health conditions and the
potential related impacts on public and animal health
associated with the oceans. Marine mammals are important
sentinels for oceans and human health due to their many
unique natural characteristics including their longevity,
coastal habitation, high trophic level feeding and unique
anatomic adaptations such as adipose tissue that can
serve as depots for anthropogenic contaminants. Also,
marine mammals are charismatic megafauna that typically
elicit a notable human behavioural response. Consequently,
many marine mammal species are now more likely to be
considered deserving of our time and attention. The
warning signs of possibly bigger and more complex
marine mammal health problems associated with emerging
diseases, particularly the viral diseases, remain a concern.
This is particularly relevant since the emerging disease data
suggest that complex interactions may occur among
anthropogenic toxins, infectious agents and immunologic
and genetic factors in many marine mammal species that
live in a coastal environment with humans. Therefore,
it is prudent for us to continue to characterize marine
mammal health issues that could potentially impact our
own well-being. The study of these complex disease issues
presents opportunities to integrate the One Health
approach of working collaboratively with members of
multiple health professions. Global disease surveillance
will require the collaboration and cooperation of
physicians, veterinarians, epidemiologists, environmental
biologists and others to detect and characterize emerging
and novel viral diseases.
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